
AFRL-AFOSR-VA-TR-2016-0227

A Logical Framework for Service Migration Based Survivability

Yanjun Zuo
University of North Dakota

Final Report
06/24/2016

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

15-06-2016
2. REPORT TYPE

Final Performance Report
3. DATES COVERED (From - To)

June 2012 - May 2016
4. TITLE AND SUBTITLE

A Logical Framework for Service Migration Based Survivability

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-12-1-0131

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Zuo, Yanjun

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of North Dakota
293 Centennial Drive Stop 8363
Grand Forks, ND 58202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Air Force Office of Scientific Research
875 N. Randolph Street
Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research aims at developing a logical framework for service migration based survivability in which service migration is an effective mechanism
to dynamically transfer critical services from compromised platforms to other clean platforms to ensure that the critical functions will
be continuously provided. The research methodology involves defining logic models, system properties, and service migration decision models. We
studied the fundamental ingredients and characteristics of a service migration and the key system properties that support an assured service
migration. A formal logic was developed for service migration modeling, survivability policy specification, and system property verification. A
holistic approach was developed for service migration decisions, which manage and guide the activities and procedures of a service migration
process. The approach includes three major decision components – (1) determining whether a service migration is the most appropriate course of
action to take in case of a malicious attack; (2) deciding the best strategy for a service migration; and (3) specifying an effective and efficient
schedule for the service migration activities.
15. SUBJECT TERMS

Service migration, survivability, logical framework, modeling, decision making

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

17

19a. NAME OF RESPONSIBLE PERSON
Yanjun Zuo a. REPORT b. ABSTRACT c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)
(701) 777-2517

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Adobe Professional 7.0
Reset DISTRIBUTION A: Distribution approved for public release.

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as
Report). An entry in this block is necessary if the abstract
is to be limited.

Standard Form 298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release.

Final Performance Report

Submitted to

U.S. Air Force Office of Scientific Research

By

The University of North Dakota

Proposal Title: A Logical Framework for Service Migration Based Survivability
Grant Number: FA9550-12-1-0131

Principal Investigator: Dr. Yanjun Zuo

Program Manager: Dr. Kathleen Kaplan

1. MAJOR ACCOMPLISHMENTS

The major accomplishments of the project include:

 studying the fundamental ingredients and characteristics of a service migration and the key

system properties that support an assured service migration;

 developing a formal logic for service migration modeling, survivability policy specification, and

system property verification;

 developing a viable method for linking survivability constraint solving to logic reasoning;

 modeling service migration and studying critical factors that affect an effective service

migration;

 specifying service migration semantics and constraint solving;

 developing a belief-based decision approach for determining service migration in case of a

security incident;

 constructing a fuzz inference model to identify a service migration strategy;

 developing a logic approach for service migration scheduling;

 developing a mobile agent-based scheme for service migration simulation and verification;

 proposing a constrained, possibilistic logic approach for system survivability evaluation.

2. EXECUTIVE SUMMARY

Information systems have been continuously used in many high security and high integrity settings to

support our society’s critical services including national defense and homeland security. Any

disruption of those systems, even for a short period of time, could result in severe consequences. In

order to respond to security incidents and survive devastating attacks, a critical system must be able

to adapt to its operating environments dynamically. The approach that we study in this research is to

equip the system with an ability to migrate the critical services from the compromised platforms to

other clean, healthy platforms. Service migration is an important strategy for system survivability. In

a situation where component replication is difficult or damage masking fails, service migration is a

viable solution to ensure that the critical services can be continuously provided even in case of

malicious attacks. Conceptually, service migration involves suspending the current service state,

moving the core service programs and other trustworthy space to other platforms, and resuming

where computation was left off on the new platforms. Service migration helps a system avoid further

DISTRIBUTION A: Distribution approved for public release.

loss in case of a security incident and ensures service continuity even when part of the system has

been damaged.

In this research we aim at developing a logical framework of service migration for system

survivability. More specifically, we have (1) developed a formal logic to represent and reason about

system properties to support an assured service migration, (2) specified a semantic model for service

migration, (3) modelled service migration process and studied the critical factors that affect an

efficient service migration, and (4) developed a holistic approach for service migration decisions

including three decision components – (a) determining whether a service migration is the most

appropriate course of action to take in case of a malicious attack; (b) specifying the best strategy for a

service migration; and (c) developing an effective and efficient schedule for the service migration

activities. In addition, we have developed an agent-based system for service migration simulation and

a constrained, possibilistic logic for system survivability evaluation.

2.1 A Logical Framework for Service Migration

In developing a formal logical framework to represent and reason about system properties to support

an assured service migration, we first specify an abstract system model which lays out the

architectural foundation to model various components of a service migration and relocation.

Stripping details of a system and its properties to their necessity and applying formal analysis allow

us to study the survivability strength and criticality of the system components and their

functional/security properties for an assured service migration. In the system architecture, a

migration-enabled system (denoted as SYS) has the following components and processes:

 PM = {p1, p2, ..., pm}: a set of distributed computing platforms, where each pi can support a set of

services as represented by its capability set Abi(pi);

 SV = {s1, s2, …, sn}: a set of services supported by the platforms of SYS. The notation Ex(sj, pi) is

used to represent that a service sj is executed on platform pi during a particular time period;

 Migration Manager (MM): A component of SYS which coordinates the service migration activities.

As part of MM, a scheduler executes a function Choose(pi, sj, pk) to generate a service migration

arrangement for each service sjSV to be migrated from its current platform pi to a new healthy

platform pkPM. Service migration is necessary in case of a detection of severe damage to the

platform pi, or the current platform cannot satisfy the security requirements of the services given the

changed operating environment;

 M(sj, pi, pk) ≡ Ex(sj, pi) => Ex(sj, pk): a service migration process that suspends the current service sj

on pi, moves its core programs (and other trustworthy space) to a new platform pk, and resumes where

service was left off on the new platform;

 R(sj, pk, pi) ≡ Ex(sj, pk) =>Ex(sj, pi): a service relocation process in which the service sj is transferred

from the migrated platform pk to its original platform pi after pi has been recovered from the damage

and the operating environment has improved.

We have specified the major activities and the timeline of a service migration/relocation process

as shown in Figure 1. The entire process is triggered by an event such as the detection of severe

damage to platform pi. The first step is for the scheduler to generate a feasible arrangement for each

critical service sj currently executed on pi to be migrated to a healthy platform pk. In the meantime, sj

is halted, e.g., freezing service processes, recording global data (service configuration and state),

recording the states of individual processes, and terminating the entire service program. The

migration process M(sj, pi, pk) starts immediately when the alternative service platform is determined

and sj is appropriately halted. M(sj, pi, pk) is composed of three sub-actions: (1) migration preparation;

(2) service/data transfer; and (3) service setup on pk. The service sj may be executed on the new

platform pk until its completion. For a long-running service, however, if the previously damaged

DISTRIBUTION A: Distribution approved for public release.

platform pi has been recovered, a relocation process R(sj, pk, pi) may transfer sj back to pi where it can

be completed. R(sj, pk, pi) is composed of three sub-actions similar to M(sj, pi, pk).

To ensure those migration activities are carried out correctly, we must specify the requirements

for the key system and service properties, which, if satisfied, will provide an assured service

migration. A formal logic has been developed for system activity specification in which important

service characteristics are preserved during and after a migration. Our logical framework provides

means to represent and verify that a system with the required properties satisfies a user’s policy in

terms of the desired survivability objectives. We specify a set of requirements on system/service

properties as domain specific constraints. Logic reasoning and constraint solving are separately

designed but integrated through the applications of the logic inference rules.

2.1.1 The Logic

In our logic, time is represented by points on the real line and durations are intervals on the real line.

Causality among sequences of activities is captured through implications between formulas. The basic

types of the logic language include entities (e.g., a platform pi and a service sj), actions (Acts), events

(Evts), time points, time intervals, and various system properties. As a schedulable work, an action

represents an activity or a set of activities in a service migration/relocation process. An event is

defined as a temporal marker which occurs at a certain time point. For each action Act, two time

points are implicitly defined, denoted as Act↑ and Act↓, which represent the starting and ending time

points of Act, respectively. We use @Evt to represent the time point when an event Evt occurs and

Du(Act) the duration of the action Act.

The formulas and connectives to form the logic are presented next, where P represents an atomic

formula over an action or an event; A and B represent atomic or compound formulas; v is a variable

with a sort (type) t; C represents a constraint; and Pro represents system/service properties that must

hold during and after a service migration. If a formula represents an action/event, the formula is true if

the represented action/event is (or can be) successfully finished.

(Formulas) A, B ::= P | A ˄ B | A ˅ B | A →B | A □ B | A ○ B | A # B | A ‡ B | A «c C | C »c A | v:t. A

| v:t. A

(Atomic formulas) P ::= Act | Evt

(Actions) Act ::= Execution | Scheduling | Halting | …

(Events) Evt ::= Damage_Detection | Choose | …

(Constraints) C ::= Exp | Exp@Evt | Exp<T1, T2>

(Constraint expressions) Exp ::= CT | CT1 Op CT2

(Constraint terms) CT ::= Pro | T | Func | Exp

(Constraint functions) Func ::= Du(Ac) | Remaining(sj) | …

(Time points) T ::= c | @Evt | Act↑ | Act↓

(Operators) Op ::= < | ≤ | ≥ | = | …

(Properties) Pro ::= Healthy(pi) | Service_level(sj, pi) | …

(Entities) Platforms ::= pi | pk | …

(Entities) Services ::= sj | …

Fig. 1: Migration and Relocation Actions/Events and Timeline for Service sj

Execution

Ex(sj, pi)

Halting of sj

Migration

Scheduling

Migration

Preparation
Service/Data

Transfer
Service Setup

Service Migration M(sj, pi, pk):

Ex(sj, pi) => Ex(sj, pk)

Execution

Ex(sj, pk)

Service Relocation R(sj, pk, pi):

Ex(sj, pk) => Ex(sj, pi)

)

Relocation

Preparation

Service/Data

Relocation
Fuzzy Recovery &

Service Setup
Execution

Ex(sj, pi)

Detection of Damage on pi

DISTRIBUTION A: Distribution approved for public release.

The meanings of the logic connectives are presented below and their semantics are formally
described by the inference rules.

A □ B: formula A implies formula B to be true in the future, i.e., the action/event represented by formula

B will start sometime in the future relative to the time when the action/event represented by

formula A finishes;

A ○B: formula A implies formula B to be true in the next state, i.e., the action/event represented by A

causes B to occur in the next state relative to the time when the action/event represented by A

finishes;

 A ‡ B: the actions/events represented by A and B are executed concurrently and start at the same time;

 A # B: the actions/events represented by A and B are two sequential sub-components of a compound

 action/event;

 C »c A: constraint implication – it introduces a pre-constraint C to formula A;

 A «c C: constraint conjunction – it asserts the validity of a post-constraint C of formula A.

Our logic is designed to represent a service migration/relocation process and to specify the

necessary system properties to support an assured service migration. We describe the actions/events

and their inherent relationships as a set of system transition rules (TRs). Each transition rule

describes the required system/service behaviors in a service migration/relocation process. If a system

is developed with those transition rules and the necessary properties, users can be certain that the

system satisfies the survivability policy. In our research, we have identified ten transition rules and

only show first two rules in this report.

TR1: sj. (DD(sj, pi) →○ (P(sj) >L*)@DD(sj, pi) »c H(sj) ‡S(pi, sj))

Transition rule TR1 represents the temporal relationships among DD(sj, pi), H(sj) and S(pi, sj) as well as a

pre-constraint for service halting and migration scheduling – immediately after the execution of a critical

service sj on platform pi is signaled to stop (i.e., DD(sj, pi)), a scheduling program (i.e., S(pi, sj)) is executed

in order to identify a healthy platform for sj to migrate to. In the meantime, sj is appropriately halted (i.e.,

H(sj)). Since those two actions are performed concurrently, they are represented by a compound formula

H(sj)‡S(pi, sj). The pre-constraint of H(sj)‡S(pi, sj) is that the priority of sj must be greater than L* (i.e., P(sj)>

L*).

TR2: S(pi, sj) →○ pk. (C(pi, sj, pk) →○ Sh(pi, sj, pk) «c ((sjAbi(pk) ˄ SL(sj, pk) ≥ L)@C(pi, sj, pk) ˄

He(pk)@C(pi, sj, pk)))

Transition rule TR2 indicates that if the Choose function (i.e., C(pi, sj, pk)) identifies a new platform pk for

service sj to migrate to as a result of the scheduling process (i.e., S(pi, sj)), sj is scheduled to migrate from pi

to pk (i.e., Sh(pi, sj, pk)). The post-constraints of Sh(pi, sj, pk) are: (1) pk can fulfill the necessary functions of

sj (i.e., sjAbi(pk)); (2) the new platform pk is healthy at the time of the scheduling decision, i.e.,

He(pk)@C(pi, sj, pk); and (3) the service level of sj on the new platform pk will be maintained at least at a

level of L, i.e., (SL(sj, pk) ≥ L)@C(pi, sj, pk).

The inference rules in our logic are represented using sequent calculus. We start from a sequent

(hypothetical judgment) with the format ∑; Ψ; Γ => β\Ɠ, where ∑ represents a context specifying

the sort (or type) of each term or variable appearing in a formula, Ψ represents a set of assumptions

in terms of constraints (called assumption constraints), Γ represents a set of hypothetic logic

formulas, β represents a conclusion formula, and Ɠ represents a set of constraints to be satisfied or

solved (called goal constraints). The sequent is interpreted as: given all the variables defined in ∑, if

the assumption constraints in Ψ and the logic hypothesis in Γ are assumed to be true, then we can

prove the logic goal β subject to the satisfaction of all the goal constraints in Ɠ.

The constraint formulas in Ψ represent the required system/service properties such as system

support for a service migration (e.g., the pre- and post-constraints of the activities in a

migration/relocation process), the service quality level on a platform, and the temporal restrictions on

DISTRIBUTION A: Distribution approved for public release.

system/service actions and events (e.g., the time bound to complete an activity). Ɠ is the conjunction

of all the constraints that must be satisfied given the constraint assumptions in Ψ. Ɠ is specified for the

entire proof process and hence it is checked in the last step.

Γ includes two categories of hypotheses: (1) the system transition rules which model sequences of

service migration/relocation actions; and (2) a set of “known facts” such as a damage detection on a

platform at a certain time point (modeled as time zero), an arrangement for a service to migrate to a

new platform, and a notification of a compromised platform being repaired. Those formulas are used

as assumptions for logic reasoning.

Fig. 2: Logic Inference Rules in Sequent Calculus

The inference rules of the logic are represented in Figure 2, where φ represents an arbitrary

formula; where ∑├ var(C) means that the variables in formula C have the appropriate sorts (types) as

defined in the context ∑; and where check, admit and├ are constraint functions. Basically, check

verifies whether a constraint is admissible to an assumption constraint set Ψ or whether two

constraint sets Ψ1 and Ψ2 can be combined. Intuitively, a constraint C is admissible to Ψ if the

addition of C to Ψ will not cause any inconsistency between C and the existing constraints. admit

adds a new constraint to Ψ or Ɠ. Ψ├ Ɠ is to verify whether all the constraints in Ɠ can be solved

given the constraints in Ψ.

The proof process starts with the Constraint Solving rule. This rule states that in order to prove a

goal formula A without constraint verification (i.e., ∑; Γ => A), we need to show: (1) A is provable

with the assumption constraints Ψ and the goal constraints Ɠ (i.e., ∑; Ψ; Γ => A\Ɠ), and (2) every

goal constraint CƓ is solvable given the constraints in Ψ (i.e., Ψ├ Ɠ). By solving constraint C, we

 check(Ψ1,Ψ2) ∑; Ψ1; Γ => A\Ɠ1 ∑; Ψ2; Γ, B => φ\Ɠ2 (→L rule) ∑; Ψ; Γ, A => B\Ɠ (→R rule)

 ∑; Ψ1Ψ2, Γ, A → B => φ\(Ɠ1Ɠ2) ∑; Ψ; Γ => (A →B)\Ɠ

 ∑; Ψ; Γ, A, B => φ\Ɠ (˄L rule) check(Ψ1,Ψ2) ∑; Ψ1; Γ => A\Ɠ1 ∑; Ψ2; Γ => B\Ɠ2 (˄R rule)

 ∑; Ψ; Γ, A˄B => φ\Ɠ ∑; Ψ1Ψ2, Γ => (A˄B)\(Ɠ1Ɠ2)

 check(Ψ,(A~○B)) ∑; Ψ; Γ, A→B => φ\Ɠ (→○L rule) ∑; Ψ; Γ =>(A → B)\Ɠ (→○R rule)

 ∑; admit(Ψ,(A~○B)); Γ, A →○ B => φ\Ɠ ∑; Ψ; Γ => (A →○ B)\admit(Ɠ,(A~○B))

 check(Ψ,(A~□B)) ∑; Ψ; Γ, A→B => φ\Ɠ (→□L rule) ∑; Ψ; Γ =>(A → B)\Ɠ (→□ R rule)

 ∑; admit(Ψ,(A~□B)); Γ, A →□ B => φ\Ɠ ∑; Ψ; Γ => (A →□ B)\admit(Ɠ,(A~□B))

 ∑├ var(C) ∑; Ψ; Γ, A => φ\Ɠ (»c L rule) ∑├ var(C) check(Ψ, C) ∑; Ψ; Γ =>A\Ɠ (»c R rule)

 ∑; Ψ; Γ, C »c A => φ\admit(Ɠ, C) ∑; admit(Ψ, C); Γ => (C »c A)\Ɠ

 ∑├ var(C) check(Ψ, C) ∑; Ψ; Γ, A => φ\Ɠ («c L rule) ∑├ var(C) ∑; Ψ; Γ =>A\Ɠ («c R rule)

∑; admit(Ψ, C); Γ, A «c C => φ\Ɠ ∑; Ψ; Γ => (A «c C)\admit(Ɠ, C)

 check(Ψ,(A#B)) ∑; Ψ; Γ, A→○ B => φ\Ɠ (#L rule) ∑; Ψ; Γ =>(A→○B)\Ɠ (#R rule)

 ∑; admit(Ψ,(A#B)); Γ, A#B => φ\Ɠ ∑; Ψ; Γ => (A#B)\admit(Ɠ,(A#B))

 check(Ψ,(A‡B)) ∑; Ψ; Γ, A˄B => φ\Ɠ (‡L rule) ∑;Ψ; Γ => (A˄B)\Ɠ (‡R rule)

 ∑; admit(Ψ,(A‡B)); Γ, A‡B => φ\Ɠ ∑; Ψ; Γ => (A‡B)\admit(Ɠ,(A‡B))

 ∑├ v:t ∑; Ψ; Γ, [v/x]A => φ\Ɠ (L rule) ∑├ v:t ∑; Ψ; Γ => ([v/x]A)\Ɠ (R rule)

∑; Ψ; Γ, x:t. A => φ\Ɠ ∑; Ψ; Γ => (x:t. A)\Ɠ

 ∑├ v:t ∑; Ψ; Γ, [v/x]A => φ\Ɠ (L rule) ∑├ v:t ∑; Ψ; Γ => ([v/x]A)\Ɠ (R rule)

 ∑; Ψ; Γ, x:t. A => φ\Ɠ ∑; Ψ; Γ => (x:t. A)\Ɠ

 check(Ψ,(A↑= t1, A↓= t2)) ∑; Ψ; Γ, A => φ\Ɠ (<>L rule) (x1, x2, … xn) = (y1, y2, … yn)θ (Initial rule)

 ∑; admit(Ψ,(A↑= t1, A↓= t2)); Γ, A<t1, t2> => φ\Ɠ ∑; Ψ0; Γ, p(x1,… xn) => p(y1,… yn)\

 ∑; Ψ; Γ => A\Ɠ Ψ├ Ɠ (Constraint Solving rule)

 ∑; Γ => A

DISTRIBUTION A: Distribution approved for public release.

mean that the constraints in Ψ lead to a resolution that C is true. The Initial rule states that given the

initial known constraints, Ψ0, we can prove a formula p(y1,… yn) if p(x1,… xn) is assumed true and

(y1,… yn) is unified with (x1,… xn) through the most general unifier θ. There is no goal constraint for

the Initial rule (i.e., Ɠ =).

2.1.2 Constraint Solving and Proof Search

To capture the complexity of a service migration and the properties of a system to support an assured

service migration, we propose to integrate the domain constraints with logic reasoning to include an

efficient constraint solver with such properties as consistent and complete and a decision procedure

capable of solving a set of constraints in an effective manner. The logic engine and the constraint

solver are separately designed but integrated through the applications of the logic inference rules.

This allows one to represent and reason the important features of a service migration implemented by

different techniques. Separation of logic and the constraint domain will make the logical framework

more modular, scalable, and applicable to a wide range of applications.

The constraint functions verify whether some constraints can be satisfied (i.e., Ψ├ Ɠ) or admitted

to a constraint set (e.g., check(Ψ, C), admit(Ψ, C), admit(Ɠ, C)). Since constraint checking and

solving are driven by a logic engine through the inference rules during a proof process, we have

developed an algorithm to explicitly describe the interactions between the constraint manager and the

logic engine. The three major tasks as the main components of the algorithm are discussed next.

Constraint Variable Unification When a logic inference rule is applied, a logic variable may be

unified with a constant or another variable. Since logic variables may appear in the constraint terms

in Ψ and Ɠ, the unifier should be propagated to the constraint variables as well. The algorithm

maintains the most general verifier and applies it to each constraint term. A basic unifier is

determined when the Initial rule is applied, i.e., a logic goal formula (e.g., p(y1,… yn)) is unified with

a logic assumption (e.g., p(x1,… xn)) in Γ.

Constraint Checking and Admission Constraint checking is to verify if a constraint C can be

admitted to the assumption constraint set Ψ (i.e., check(Ψ, C)) or two assumption constraint set Ψ1

and Ψ2 can be combined without conflict (i.e., check(Ψ1, Ψ2)). Intuitively, check(Ψ, C) is to verify if

a prospective requirement (represented by C) for a system property or a time bound on an action can

be assumed in a logic reasoning process for an assured service migration given some existing

constraint assumptions. A new constraint C is admissible to Ψ={C1, C2, …, Cn} if there is no conflict

in assigning values to the free variables in C1, C2, …, Cn given the quantitative constraints expressed

by C. If indeed there is no conflict, admit(Ψ, C) returns a new assumption constraint set with C added.

Otherwise, check(Ψ, C) returns false.

Constraint Solving Constraint solving is to solve all the goal constraints Ɠ given the assumption

constraints in Ψ (i.e., Ψ├ Ɠ). By solving a constraint CƓ (i.e., Ψ├ C), we mean to check if (1)

every variable in C has been resolved to a ground term; and (2) the constraint equation/inequality

relationship represented by C holds given the existing constraints in Ψ. A constraint manager reduces

constraint solving to a multi-criteria linear equations/inequalities checking problem. Constraint

solving is the last step in a proof process when the constraint-unverified sub-sequent (e.g., ∑; Ψ; Γ

=> A\Ɠ) has been proved. Constraint solving makes sure that all the goal constraints in Ɠ can be

satisfied given the assumption constraints in Ψ.

A survivability policy specifies a user’s requirements for the survivability features of a system. In

our framework, such a policy is represented in terms of a set of temporal and functional properties

that the system must have in order to support an assured service migration. If a system possesses

those properties, it essentially guarantees that the critical services can be dynamically reallocated

DISTRIBUTION A: Distribution approved for public release.

from a compromised platform to other healthy ones. Therefore, the entire system can go through

malicious attacks and continuously provide mission-critical services. If that is the case, we say the

system satisfies the user’s survivability policy. As a generic case, the service migration-based

survivability policy can be specified from three aspects as represented by the following logic goal

statements:

(1) G1(Soundness): p.(→□(D(sj, p) «c(He(p) ˄SL(sj, p) ≥ L))

A service sj will be eventually completed on a healthy platform p with a service level at least L –

either on its originally executed platform pi or the migrated platform pk as long as the platform is

damage-free (healthy).

(2) G2 (Efficiency): (→○(H(sj)‡S(pi, sj) →○ M(sj, pi, pk) □ R(sj, pk, pi)) «c (Du(H(sj)‡S(pi, sj))+Du(M(sj,

pi, pk))+Du(R(sj, pk, pi)) ≤ Dmax)

The total time spent on service scheduling S(pi, sj), halting H(sj), migration M(sj, pi, pk), and relocation

R(sj, pk, pi) must not be more than the maximum allowable time Dmax.

(3) G3 (Integrity): R(sj, pk, pi). (M(sj, pi, pk). (M(sj, pi, pk) □ R(sj, pk, pi)))

 For every relocation process R(sj, pk, pi), there must exist a migration process M(sj, pi, pk) that

occurred earlier.

To verify that a system satisfies the survivability policy as specified by the above three goal

statements, it is only necessary to find a proof for “∑; Γ => (G1 ˄ G2 ˄ G3)”.

A proof search is to identify a derivation of a goal statement from a list of hypothetical

assumptions subject to a set of constraints by applying a set of inference rules. A proof is logically

viewed as a tree rooted by the conclusion sequent (e.g., ∑; Γ => (G1 ˄ G2 ˄ G3) as shown above),

where the leaf sequents are all axioms and each non-leaf sequent is derived from its premise sequents

by a rule application. The proof search is syntax-driven by following the logic inference rules. Each

application of an inference rule reduces a sequent matching the conclusion of the rule to the premises

of the rule (i.e., sub-sequents). A branch of the proof is successfully terminated when the formula to

be proved unifies with a formula in the hypothesis set Γ. The resulting unifier is propagated to the

next remaining premise (including the constraint formulas in Ψ and Ɠ as we discussed earlier) and

the process is repeated. The proof search follows the following rules: (1) if every leaf node is an

instance of an axiom, i.e., ∑; Ψ0; Γ, p(x1,… xn) => p(y1,… yn), the proof search has terminated

successfully; (2) if some leaf contains no logic connectives, but is not an instance of any axiom, then

the search has terminated unsuccessfully; and (3) if a leaf contains some logic connectives, a search

step may choose one connective and apply the corresponding inference rule to reduce the proof of the

conclusion to its premises.

2.2 Service Migration Modeling and Critical Factors that Affect an Effective Service Migration

To quantify the important factors that affect an effective and efficient service migration/relocation,

we have developed a simulation model to represent the activities and behaviors of system

components in a service migration/relocation process. The model is encoded in the Performance

Evaluation Process Algebra (PEPA). PEPA introduces delays and probabilistic occurrences to

process algebras. The timing behavior of a system is quantified by associating a random variable

with each activity, representing its duration. Behavior uncertainty is determined by probabilistic

branching – the probabilities of the occurrence of some activities are determined by a race condition

between the enabled activities. In our model, the service migration and relocation activities are

represented as stochastic actions that are non-deterministic and whose occurrence or non-occurrence

is predicted by one or more random variables (i.e., activity rates). A system SYS is modeled as

interactions between the service migration/relocation components (i.e., a migrating scheduler, a

DISTRIBUTION A: Distribution approved for public release.

platform to support a critical service, and a relocation manager) and the damage recovery

components (i.e., a fault diagnosing agent and a damage repairer).

The PEPA model representing SYS is shown in Figure 3. As we can see, the model has 11

processes (components) representing a complete procedure for service sj to be migrated from a

compromised platform pi to a new platform pk and finally relocated from pk to pi after pi is recovered.

The model also includes the recovery procedure of the compromised component.

Fig. 3: PEPA Model of Service Migration and Relocation

The PEPA model has been solved using the PEPA Eclipse Plug-in software. We have developed

a Bayesian network decision model to determine the activity rates used in the model. Several rounds

of simulations were conducted for steady-state, utilization, passage-time, throughput, and

experimentation analysis, in order to study how important factors influence the effectiveness and

efficiency of a service migration/relocation process. Those analyses are summarized below.

Steady-state Probabilities, Local State Utilization, and Activity Throughput For a PEPA

simulation execution, the system states corresponding to the underlying continuous Time Markov

processes are derived and the probability of the system at each state is generated. Our PEPA model

has 33 (global) states. Since the model has two top-level PEPA processes: Executioni_j and

Recovery_Manager, a (global) state has two elements, one from each local state of the corresponding

top-level processes. Our simulation shows that Executioni_j has 17 local states and

Recovery_Manager has 4. The PEPA states with dominating steady-state probabilities are those

associated with the two local states executingi_j.Executioni_j (0.891) and Recovery_Manager (0.981).

This has also been observed from our utilization analysis, which shows the long-run utilization of

each top-level process of the PEPA model. Since executingi_j.Executioni_j represents the normal

execution of service sj on its original platform pi, maximizing the utilization of this state is the

objective of an efficient service migration and relocation. We use Pro to represent this utilization rate.

Activity throughput A throughput analysis lists the rate at which actions of the PEPA are

performed at steady-state. The two PEPA activities with the highest throughputs are executingi_j

(0.09) and monitoring_normal (0.09). The former indicates that service sj is executing on platform pi

and hence a higher value is more desirable. The latter indicates that the intrusion detection system

reports system normal operations in most cases (i.e., no suspicious behaviors are detected). Just as

the steady-state analysis focuses on the local state executingi_j.Executioni_j, the throughput of

Executioni_j ≡ (monitor_anomaly, p1).(alarm, al).Contingencyi + (monitor_normal, p2). (executingi_j,

f). Executioni_j;

Contingencyi ≡ (investigate_damaged, (it *p3)).(recovery_notifyi, tt).Migration_Manager +

(investigate_self_contain, (it *p4)).Executioni_j;

Migration_Manager ≡ (haltingi_j, h).Migration_Scheduler;

Migration_Scheduler ≡ (schedule_ok,(st *p5)).Migrationi_k +(schedule_failure,(st*p6)).Migration_Scheduler;

Migrationi_k ≡ (m_Pre, m1).(m_Tr, m2).(m_Su, m3).Executionk_j;

Executionk_j ≡ (recovery_check_ok, p7).(recoveredi, T).Relocation_Manager +

(recovery_check_pending, p8).(executingk_j, f).Executionk_j;

Relocation_Manager ≡ (haltingk_j, h).Relocationk_i;

Relocationk_i ≡ (r_Pre, r1).(r_Tr, r2).(r_Su, r3).Executioni_j;

Recovery_Manager ≡ (recovery_notifyi, T).Recoveryi;

Recoveryi ≡ (diagnose, dt).Repairer;

Repairer ≡ (repair_success, (l *p9)).(recoveredi, rp).Recovery_Manager + (repair_fail, (l*p10)).

Recoveryi;

 SYS ≡ Executioni_j Recovery_Manager

(L = {recovery_notifyi, recoveredi})

DISTRIBUTION A: Distribution approved for public release.

executingi_j represents the desired behavior of sj on pi; therefore, it is another metric in which we are

interested in the research.

Experimentations We run the PEPA model with values for its parameters across desired ranges.

The experimentations are to study how system security/functional factors affect the utilization rate of

executingi_j.Executioni_j, i.e., Pro and the throughput of executingi_j as mentioned above. We start

with the two factors determined by the security features of the system SYS: (1) the probability of

anomaly detection on a platform pi in SYS, i.e., Pro1 in an intrusion-detection report cycle; and (2)

the probability that the detected damage is severe, i.e., Pro3. Intuitively, if a system has strong

security mechanisms and a high level of capability to contain and mask potential damage, then the

need for the critical services to be migrated from their normal executing platforms would be low.

Hence, the utilization of executingi_j.Executioni_j should be higher. The experimentations confirm this

observation, i.e., Pro decreases when Pro1 and Pro3 increase. This clearly indicates that a higher

compromise rate on a platform decreases the amount of time that the platform effectively supports

the critical services. Furthermore, we have identified that the quantitative relationship between Pro

and Pro1 is roughly linear given a fixed Pro3 rate. This implies that a significant improvement of the

system’s security will result in an almost equal increase in the normal execution of critical services

on their original platforms. A similar pattern can be observed for the throughput of executingi_j given

different Pro1 and Pro2 values.

As we have discussed earlier, the Migration Manager is responsible for halting a critical service

on a compromised platform, scheduling and arranging a new platform for the service to be migrated

to, moving the data and program space of the service to the new platform, and finally setting up the

service on the new platform. In the meantime, the system component Recovery Manager diagnoses

the faults and attempts to repair the compromised platform. The performance of those two system

components affects a service migration. Our simulation shows that a higher probability of a

successful migration-scheduling rate, and a higher probability of a successful repair of a

compromised platform, both positively affect the utilization of executingi_j.Executioni_j, i.e., Pro.

This indicates that effective damage recovery and highly available healthy platforms increase the

overall efficiency of a service migration, which in turn increases the percentage of time that the

critical services are executed on their normal platforms. However, Pro becomes stable once the

possibility of a new platform being identified at the time of migration scheduling reaches a certain

value (0.1 in our simulation). That means that any further improvement of migration scheduling

beyond this point will no longer significantly improve Pro. Therefore, the migration scheduling is

not a significant bottleneck for executingi_j.Executioni_j beyond that point.

2.3 Semantic Specification of Service Migration

We have developed a semantic model to formalize a service migration, its main constructs, and the

constraint rules on the operations and interactions of the service migration activities. We defined the

basic notations that describe the core constructs of a service migration, which form the baseline to

specify the semantic constraints on the activities of a service migration. The service migration

constraints specify what system activities are valid and what properties must hold during and after a

service migration. The constraints are defined in terms of (a) the inherent relationships and

interactions among system/service activities (e.g., service dependency, resource provision and

requirement) and (b) functional and policy regulations on service migration activities (such as service

prioritization and platform restrictions). The model serves as a foundation for users to specify and

validate the integrity and important properties of a service migration. Some of the basic service

migration constrain rules are listed in Table 1.

DISTRIBUTION A: Distribution approved for public release.

Table 1: Basic Service Migration Constraint Rules

Constraint

Rule

Representation Explanation

Destination

uniqueness
∀si S, ∀pj P, ∀pt ∈P (SP(si, pj) ˄

SP(si, pt) → ⊥) (j ≠ t)

Every service si will eventually be migrated to no more than

one platform pj or pt

Service migration

prohibition

∀si S, ∀pj P (Prh(si, pj) →

 ¬SP(si, pj))

A service is specified to be prohibited to execute on a platform

due to corporate policy (e.g., security regulations), resource

restriction on the platform, service prioritization, and/or

technical specifications

Service

dependency

constraint

∀si S, ∀S’ 2S (Dep(si, S’) → (∃st

S’, ∃pj P (SP(st, pj) → SP(si, pj))))

If one service si ∈S is dependent on any one service in a group

of services, then si must be migrated to the same platform pj as

the particular service being depended

Service atomic

constraint

∀S’ 2S (Atom(S’) → (∀si S’, ∀st

S’, ∃pj P (SP(si, pj) ↔ SP(st,

pj))))

If a set of services are mutually dependent on each other (i.e.,

atomic), then all of them should be migrated to the same

platform

Service exclusion

constraint

∀si S, ∀S’ 2S (Exc(si, S’) → (∀st

S’, ∃pj P ((SP(st, pj) ˄ SP(sj, pj) →

⊥)))

If a service si ∈S is exclusive to every service in a group of

services, then si must not be executed on the same platform

with any one of those services. One service is exclusive to

another if they have functional/resource conflicts

Resource

provision and

requirement

constraint

∀si S, ∀pj P (SP(si, pj) → (∀ra

Res (RP(pj, ra) ≥ RR(si, ra))))

If a service si ∈S is migrated to a platform, the available

resource ra provided by the platform must be no less than that

required by si for ra

Platform health

constraint
∀si S, ∀pj P (SP(si , pj) → TH(pj)) Each service must be arranged to be migrated to a healthy

platform

Based on the semantic model, we have proposed an approach to identify an optimal service

migration arrangement with the lowest cost to migrate each service to a platform without violating

any of the semantic constraints. Essentially, identifying an optimal service migration arrangement is

reduced to a Pseudo-Boolean Optimization (PBO) problem, which is an extended SAT problem. The

idea is to formulate and minimize an objective function

mjni

ji

jiji CTx
,

1,1

,, * subject to a set of pseudo-

Boolean constraints, where xi,j {0, 1} represents whether service si is arranged to be migrated to

platform pj and CTi,j represents the cost to move si to pj. In a PBO problem, each pseudo-

Boolean constraint is either in a pure Boolean Conjunctive Normal Form or in a format of

mj

j

jji xa
1

,)*(≥ bi, where ai,j, bi and xj {0, 1}.

We have developed an algorithm to automatically generate the set of pseudo-Boolean constraints

given the service migration constraints in our semantic model. A set of simulations have been

conducted to evaluate the feasibility and efficiency of using the proposed PBO approach to identify

an optimal service migration arrangement without violating any of the service migration constraint

rules. We used Sat4tj-pb (www.sat4j.org) in our simulations, which is an open-source Java library

and the wining program of the Pseudo Boolean Competition 2012. The simulations demonstrated the

feasibility of enforcing the semantic constrains in identifying an optimal service migration

arrangement using the PBO approach. For performance evaluation, we studied the impact of the

number of services to be migrated and various constraint rules on the execution time required to

identify an optimal service migration arrangement.

2.4 A Holistic Approach for Service Migration Decision Making

As a systematic defensive security approach, service migration is a system-wide process and involves

multiple components of a system. As the complexity of a system and the attacking techniques

DISTRIBUTION A: Distribution approved for public release.

continuously grow, a well-planned and ensured service migration is necessary in order to minimize

any damage resulted from malicious attacks. We have developed a holistic approach for service

migration decisions, which manage and guide the activities and procedures of a service migration

process. Our approach includes three major decision components – (1) determining whether a service

migration is the most appropriate course of action to take in case of a malicious attack; (2) deciding

the best strategy for a service migration; and (3) developing an effective and efficient schedule for

the service migration activities.

2.4.1 Belief-based Decision Making for Service Migration Determination

The first fundamental decision for a service migration is to determine whether a service migration is

the most appropriate course of action to take in a security incident. This decision is made based on the

devastating nature of the attack, the damage already caused by the attack, and system resources

available to recover and defend against the attack. Service migration is the most appropriate when the

attacking effect is so severe that it is difficult to recover the damaged platforms quickly enough to

make the services continuously available to users without a noticeable interruption. In this case, the

best strategy is to migrate the services from their compromised platforms to other clean, healthy

platforms so that those services can be continuously executed on those new platforms. In this way, any

critical services will still be available to users even when some platforms of the system have been

compromised.

Fig. 4: Belief-based service migration decision model

Making a service migration decision must balance between the cost of service migration (e.g.,

suspending current running processes, transferring the data and service programs to new platforms,

and setting up the services on the new platforms) and the necessity of migrating services somewhere

else to avoid further losses (e.g., any direct and indirect costs resulted from the compromised

platforms). A fundamental criterion for such a decision is to evaluate whether the platforms of

concern have been severely damaged. Assessing the damage status of a platform is not a trivial task

given the situation that malicious attacks have become increasingly complicated and system

resources available for damage assessment and recovery are often limited in a security incident

scenario. Our approach for damage assessment of a platform is to integrate multiple sources of

damage assessment results from several independent intrusion detection agents. We have developed a

transferable belief-based decision model to represent the damage assessment about a platform as

provided by an intrusion detection agent and to combine multiple sources of assessments into an

integrated, more reliable damage assessment result about that platform. As shown in Figure 4,

damage assessment about a platform by each intrusion detection agent is represented as a basic belief

assignment, i.e., a belief mass function on the subsets of a belief domain. Belief combination rules

are applied to integrate multiple sources of beliefs to reach a comprehensive belief assignment which

represents the final damage assessment of that platform. The combined belief assignment represents

Belief combination from

multiple intrusion

detection agents about a

platform of concern

Probability distribution on all

combinations of the possible

damage states of the platform

Bayesian decision making

(a set of decisions, a betting

frame, & cost functions)

Cost function of

each security

action

The most cost-

effective security

action

DISTRIBUTION A: Distribution approved for public release.

a probability distribution on all the combinations of the possible damage states of the platform. Given

the cost of performing a security action (e.g., service migration, system repair and restoration, and

system mending and refurbishment) on each damage state of the platform, a Bayesian decision model

is developed to determine whether a service migration is the most effective and cost efficient action

to take. In case the overall cost of service migration is minimum, a decision justifies that service

migration is the most appropriate action to take as compared with other security approaches.

2.4.2 Fuzzy Inference for Service Migration Strategy

Once a decision for service migration is made, the next step is to determine which strategy to use for
the service migration. In our discussion, a service migration strategy is a specification about whether
the service programs, the service state and the data space need to move entirely or partially given
different security and system situations. Such a strategy provides a high-level guideline for the
underlying service migration activities and procedures to carry out.

Fig. 5: Components of the Fuzzy Inference System for Determining a Service Migration Strategy

A service migration strategy is determined based on the damage degree of the service programs,
the complexity of the service programs, and the availability of network capacity to securely transfer
service programs and data to their new platforms. In one situation, if the service programs have been
severely damaged, they cannot be executed on the new platforms and therefore should not be moved.
Rather, functionally equivalent programs must be generated on the new platforms in order to
continuously execute the services. From a security perspective, the newly generated service programs
must be resistant to the same type of attacks occurred on the compromised platform. In another
situation, if the service programs are only damaged with a minor degree or even damage free, they can
be readily used on the new platform and hence can be migrated entirely. Regardless whether the
service programs are moved or not, the service state and the data space must be saved and moved to
the new platform in order for the services to be resumed from wherever has been left on their original
platforms. As a general guideline to determine a service migration strategy, only a minimum amount
of data and programs should be migrated whenever possible. We have identified the following three
service migration strategies:

 Heavyweight migration - moving the entire service programs, the service state, and the data space

from their current platform to a new platform;

 Lightweight migration - only relocating the service state and the data space but not the service

programs. Since the service programs are not moved, the system must re-generate the service

code on the new platforms so that the service can be continuously provided on the new platforms;

Service Migration Strategy Fuzzy Inference System

Knowledge Base

Fuzzy rules representing domain

expert knowledge about implications

of conditions to different service

migration strategies

Meta Database

Fuzzy variables, fuzzy terms,

and the membership functions of

the fuzzy terms

Logic Inference Engine

Fuzzy logic reasoning taking the

crisp values of the input fuzzy

variables and the fuzzy rules

Fuzzification & Defuzzification

Interfaces

User interfaces for input and

output values

DISTRIBUTION A: Distribution approved for public release.

 Middleweight migration - moving part of the service programs, along with the service state and

the data space to the new platforms and generating the remaining unmoved service program

components on the new platforms in order to execute the service programs.

We have developed a fuzzy inference system to determine a service migration strategy. Our

approach uses expert knowledge as linguistic reasoning rules and takes service programs damage

assessment, service programs complexity, and available network capability as input. The fuzzy

inference system includes four components as shown in Figure 5: (1) a knowledge base containing a

set of fuzzy rules that represent domain expert knowledge about the implications of conditions to a

service migration strategy. Each rule is represented in linguistic fuzzy terms in a format of If-Then

statement, indicating the assumptions and the consequence of a logic implication; (2) a meta database

containing fuzzy variables, fuzzy terms, and the membership functions of the fuzzy terms; (3) a logic

inference engine for fuzzy logic reasoning taking the crisp values of the input fuzzy variables and the

fuzzy rules. In a logic reasoning process, there is no typical “order” for the rules to be applied. The

logic engine evaluates the values of the input fuzzy variables and determines the rules that those

input values match their conditions. All the matching rules are applied regardless of the order that

they appear in the rule base. Methods for condition aggregation, fuzzy rule activation and multi-rule

result accumulation are also defined in this component for inference reasoning; and (4) a

fuzzification and a defuzzification user interfaces for input and output values. Fuzzification

determines the mapping of each input crisp value with the linguistic terms of the fuzzy variable

taking this value. Defuzzification converts the fuzzy inference result set to a crisp value for each

output variable.

We use jFuzzyLogic to simulate the fuzzy inference system for service migration strategy.

jFuzzyLogic is a Java implementation of a fuzzy logic software package, which implements a

complete fuzzy inference system as well as fuzzy control logic compliance according to IEC 61131-7

(formerly 1131-7). The definitions of the fuzzy variables of our service migration inference system

are encoded in Fuzzy Control Language (FCL). Preliminary results show that the proposed fuzzy

inference system is effective in determining the most appropriate strategy for service migration given

a security incident scenario.

2.4.3 A Logic Approach for Service Migration Scheduling

One of the important activities of a service migration is service scheduling, which generates an

effective arrangement for each service with a high level of priority to migrate from a compromised

platform to another healthy one. Before any resources are allocated for service migration and any

service migration activities can start, there must be an efficient scheduling to determine which

service to be migrated to which platform.

 We have proposed a logic approach for service migration scheduling. The logic constructs and

inference rules have been developed. Using a logic approach makes it flexible to incorporate new

constraint rules and also provides a formal method to analyze, evaluate and verify the correctness of

the approach. Given the limited resources available in a security incident and the high requirement

for continuous function of the services, service migration scheduling must be completed timely; but

in the meantime, the service migration arrangement is subject to various constraints: (1) any new

platform to host the migrating services must possess the required capabilities and resources to

support the functionality of those services; and (2) the inherent relationships among the migrating

services (e.g., dependency or exclusion) on their original platforms must be maintained on the new

platforms. In our approach, those requirements are represented as a set of constraints in a logic

reasoning process in order to generate a valid service migration schedule. The interplay between the

constraint domain and the logic reasoning is implemented through a set of inference rules.

DISTRIBUTION A: Distribution approved for public release.

In the implementation, the service migration constraints are enforced by a set of general but

expressive rules. Proof obligations and proof restrictions are generated when the corresponding

constraint rules are applied. To show that the logic reasoning will not violate any of the constraint

rules, a scheduled service must not be prohibited as indicated by a proof restriction. In the meantime,

proof obligations are generated as a result of applying some constraint rules. Those proof obligations

must be satisfied by some proof elements in order for the entire scheduling process to be successful.

A proof solution represents a feasible scheduling of a service on a particular platform, which can be

used to discharge some proof obligations. We defined a self-contained data structure to specify a set

of constraints, to create proof obligations and proof restrictions when certain constraint rules are

applicable, to verify that a reasoning step does not violate the proof restrictions, and to generate proof

solutions to solve those proof obligations.

To validate the proposed logic approach for service migration scheduling, we have developed a

proof-of-concept logic program to automatically schedule a set of services to be migrated to a set of

platforms subject to a set of constraint rules. The logic program takes a set of services and platforms

as input and generates an arrangement for each service to be migrated to a platform, or reports a

failure if no such arrangement exists or some constraints cannot be satisfied. The program was

implemented in JProlog. We run a set of simulations to verify the correctness and efficiency of the

program. All the inference rules have been validated. The results show that the logic program has

successfully identified all the valid arrangements to migrate the services to available platforms given

a set of constraints.

2.4.4 Mobile Agent-based Service Migration Simulation

Mobile agents are special software agents that move spontaneously across multiple hosts of one or
more networks. In case of malicious attacks, mobile agents can move from their damaged platforms
to other clean, healthy platforms so that the services they offer can be continuously provided on the
new platforms, thus achieving service migration. Service migration through such strategic agent
movement helps a system survive host damage and improves service availability. We propose a
mobile agent-based approach for service migration, where a group of agents collaboratively decide a
migration plan to relocate from their current platforms to other more secure and reliable platforms.

We specify the system architecture to support agent migration and propose a collaborative
decision making model for a group of agents to decide their destination platforms in a migration
process. Since agents are social entities, they collaboratively work with others on certain tasks.
Therefore, one agent may functionally depend on other agents. A service migration plan must take this
type of dependency into consideration. An algorithm for collaborative migration decision making has
been developed, which is executed by a coordinator agent. The algorithm takes as input the local
migration decisions {S1, … Si, …, Sm} from all the m agents in a group and a set of constraint rules R
for the agent group. The output is an agent migration plan. Three types of constraint rules are specified
in R: (1) atomicity rule – a set of agents must be migrated to the same platform, (2) dependency rule –
an agent functionally depends on at least one of subset of agents; therefore, it must migrate to the
same platform as the agent which it depends on, and (3) exclusion rule – two or more agents must not
be migrated to the same platform. Basically, the collaborative migration decision algorithm
recursively takes one platform from each list of feasible platforms provided by one agent, called a
tentative migration plan, and then checks this tentative plan against each constraint rule. If any rule is
violated, this tentative plan is not feasible and the algorithm moves to the next tentative migration plan
until a feasible plan is identified or all the possible tentative plans have been exhausted. A
collaborative migration plan makes sure that the agent migration will not violate any of the constraints
for the group of agents.

DISTRIBUTION A: Distribution approved for public release.

To verify the proposed agent migration scheme, we have developed a proof-of-concept mobile
agent system based on Aglets, a Java based agent platform and library for building mobile agent-based
applications. An aglet is a Java agent which is specifically designed to support mobility, i.e., allowing
an agent to migrate across the hosts of one or more networks. Our simulation includes local and
collaborative agent migration decision making as well as the actual agent dispatching to their
destination platforms. The result demonstrates the feasibility and efficiency of moving agents from
one platform to another using a mobile agent platform.

2.5 A Constrained, Possibilistic Logic Approach for System Survivability Evaluation

We have also developed a logic approach to facilitate users in assessing a software system in terms of

the required survivability features. Survivability evaluation is essential in linking foreign software

components to an existing system or obtaining software systems from external sources. It is

important to make sure that any foreign software components will not compromise the current

system’s survivability properties. Given the increasing large scope and complexity of modern

software systems, there is a need for an evaluation framework to accommodate uncertain, vague, or

even ill-known knowledge for a robust evaluation based on multi-dimensional criteria. Our approach

incorporates user-defined constrains on survivability requirements. Necessity-based possibilistic

uncertainty and user survivability requirement constraints are effectively linked to logic reasoning. A

proof-of-concept system has been developed to validate the proposed approach.

In our logical approach for survivability evaluation, the user’s survivability requirements are

represented in a logic with application specific operators and inference rules. A system’s compliance

with those requirements are checked through a logic reasoning process. Applying a formal, logic-

based approach provides a rigorous verification and guarantee of system properties in a well-

structured reasoning process. The design of the logic evaluation framework follows the following

principles and guidelines:

 (1) Since survivability is a multi-dimensional concept, a software system’s properties need to
be evaluated from different aspects, including security, adaptability, robustness, and fault tolerance;

 (2) Given the increasing scope and complexity of modern software systems, it is virtually
impossible for a user to evaluate every property of a system. For an objective and accurate
assessment about a system’s survivability features, third-party trusted evaluators can be used who are
specialized in some particular aspects of system survivability features. Our approach supports
collecting survivability property certificates from trusted evaluators, encoded as logic formulas,
reasoning on those individual assessments through a logic proof process, and integrating them into a
complete survivability evaluation result;

 (3) It is often the case that even a specialized evaluator cannot be very certain about a particular
feature of a software system. Our approach supports logic reasoning on uncertain, imprecise, or even
vague information. This uncertainty-aware reasoning is achieved by defining many-valued logic
formulas and necessity-based possibilistic uncertainty, where uncertain information can be formally

represented and linked to a logic reasoning process. The proposed approach makes it possible to
express fuzzy pattern matching in formal survivability proof;

 (4) An evaluation framework should be applicable to practical case scenarios. In terms of users’
system property requirements, it should have a mechanism to represent and reason about constraints
on the required survivability features of a software system. Some system properties may take others
as their pre-requisite conditions. For example, the system’s self-healing ability depends on an
accurate and timely damage assessment. As another example, the capability of a system to
reasonably predict the causes of system faults and take the corresponding corrective actions to
recover from damage is closely related to the system’s ability to control vulnerability. Therefore,

DISTRIBUTION A: Distribution approved for public release.

both of those two properties may be required for the system. Incorporating those and other
constraints and allowing an efficient connection between a constraint domain and a logic reasoning
process is essential for a survivability evaluation framework to be practical. Our logic framework
supports constrained logic reasoning to accommodate these and other types of constraints.

The designed logic supports fuzzy pattern matching for survivability evaluation uncertainty
reasoning and user requirement constraint specification and verification. We present a logic
mechanism to incorporate survivability requirement constraints and possibilistic uncertainty to
software system survivability evaluation. A formal design is presented to link the hybrid worlds of
constraint domains to logic reasoning. The interplay between the constraint checking and logic
reasoning is supported by a set of logic inference rules. To make sure that the logic inference rules
are correct, we have developed a prototyping theorem prover implemented in JProlog. The logic
engine is encoded in Prolog. We have conducted a set of experiments for system survivability
evaluation. All the logic inference rules have been validated.

3. PERSONNEL SUPPORTED

Faculty:

 Yanjun Zuo (University of North Dakota)

Graduate students (the project supported the following students during their studies at the University

of North Dakota):

 Xiwei Wang (M.S., Computer Science)

 Abhilasha Bhatia (M.S., Computer Science)

4. PUBLICATIONS

This project has resulted in the following journal and conference publications as well as a book

chapter. Currently, there are still a couple of papers under review, which have not been included in

the list below.

 “Reputation-based Service Migration for Moving Target Defense”, Proc. of 2016 IEEE

International Conference on Electro/Information Technology, pp. 239-246, Grand Forks, ND,

USA, 2016.

 “A Holistic Approach for Service Migration Decision, Strategy and Scheduling”, Proc. of 10th

Annual Symposium on Information Assurance, pp. 14-18, Albany, NY, USA, 2015.

 “Fuzzy Inference for Service Migration Strategy”, Proc. of IEEE International Conference on

Electro/Information Technology, pp. 54-61, DeKalb, IL, USA, 2015.

 “Mobile Agent-Based Service Migration”, Proc. of 12th International Conference on Information

Technology – New Generation, pp. 8-13, Las Vegas, NV, USA, 2015.

 “Belief-Based Decision Making for Service Migration”, Proc. of 48th Hawaii International

Conference on System Science, pp. 5212-5221, Hawaii, USA, 2015.

 “A Constrained, Possibilistic Logic for System Survivability Evaluation”, Journal of Software

Engineering and Knowledge Engineering, (24)5, pp.777-800, 2014.

 “Semantic Specification of Service Migration for System Survivability”, Proc. of 2014 IEEE

International Conference on Electro/Information Technology, p.6, Milwaukee, WI, USA, 2014.

DISTRIBUTION A: Distribution approved for public release.

 “A Logic Based Approach for Service Migration Scheduling”, Proc. of 9th International

Conference on Cyber Warfare and Security, pp. 226-234, West Layfayette, IN, USA, 2014.

 “Data Labeling for Integrity in SCADA Systems”, Proc. of 13th IEEE/ACIS International

Conference on Computer and Information Science, pp. 111-118, Taiyuan, China, 2014.

 “Towards a Service Migration Architecture for Service Availability”, Proc. of 12th International

Conference on Security and Management, pp. 325-331, Las Vegas, NV, USA, 2013.

 “Moving and Relocation: A Logical Framework of Service Migration for Software System

Survivability”, Proc. of 7th IEEE International Conference on Software Security and Reliability,

pp. 139-148, Washington D.C., USA, 2013.

 “Modeling Service Migration and Relocation in Mission-Critical Systems”, IFIP WG 11.10

International Conference on Critical Infrastructure Protection, Critical Infrastructure Protection

VII, Springer, Heidelberg, Germany, pp. 155-170, 2013.

 “Composition and Combination-based Object Trust Evaluation for Knowledge Management in

Virtual Organizations”, VINE-The Journal of Information and Knowledge Management Systems,

(43)3, pp. 296-321, 2013.

 “Towards a Logical Framework for Migration-based Survivability”, Proc. of 7th Annual

Symposium on Information Assurance, pp. 29-33, Albany, NY, USA, 2012.

DISTRIBUTION A: Distribution approved for public release.

Response ID:6384 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

yzuo@business.und.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

7017776798

Organization / Institution name

University of North Dakota

Grant/Contract Title
The full title of the funded effort.

A Logical Framework for Service Migration Based Survivability

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0131

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Yanjun Zuo

Program Manager
The AFOSR Program Manager currently assigned to the award

Kathleen Kaplan

Reporting Period Start Date

06/01/2012

Reporting Period End Date

05/31/2016

Abstract

This research aims at developing a logical framework for service migration based survivability in which
service migration is an effective mechanism to dynamically transfer critical services from a compromised
platform to other clean platforms in order to ensure that the critical functions will be continuously provided.
The research methodology involves defining logic models, system properties, and service migration
decision models.
We studied the fundamental ingredients and characteristics of a service migration and the key system
properties that support an assured service migration. An abstract system model was specified which lays
out the architectural foundation to model various components of a service migration/relocation.

A formal logic was developed for service migration modeling, survivability policy specification, and system
property verification. In our logic, time is represented by points on the real line and durations are intervals
on the real line. Causality among sequences of activities is captured through implications between
formulas. The basic types of the logic language include entities, actions, events, time points, time intervals,
and various system properties. The formulas (atomic and compound) and connectives to form the logic are
formally defined. The logic is designed to represent a service migration/relocation process and to specify
the necessary system properties to support an assured service migration. The actions/events and their

DISTRIBUTION A: Distribution approved for public release.

inherent relationships are described by a set of system transition rules. Each transition rule describes the
required system/service behaviors in a service migration/relocation process. If a system is developed with
those transition rules and the necessary properties, users can be certain that the system satisfies the
survivability policy. Basically, the logic provides means to represent and verify that a system with the
required properties satisfies a user's policy in terms of the desired survivability objectives. We specified a
set of requirements on system/service properties as domain specific constraints. Logic reasoning and
constraint solving are separately designed but integrated through the applications of the logic inference
rules.

We have developed a holistic approach for service migration decisions, which manage and guide the
activities and procedures of a service migration process. The approach includes three major decision
components – (1) determining whether a service migration is the most appropriate course of action to take
in case of a malicious attack; (2) deciding the best strategy for a service migration; and (3) specifying an
effective and efficient schedule for the service migration activities.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

AFD-070820-035.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

Final Performance Report.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

• "Reputation-based Service Migration for Moving Target Defense", Proc. of 2016 IEEE International
Conference on Electro/Information Technology, pp. 239-246, Grand Forks, ND, USA, 2016.

• "A Holistic Approach for Service Migration Decision, Strategy and Scheduling", Proc. of 10th Annual
Symposium on Information Assurance, pp. 14-18, Albany, NY, USA, 2015.

• "Fuzzy Inference for Service Migration Strategy", Proc. of IEEE International Conference on
Electro/Information Technology, pp. 54-61, DeKalb, IL, USA, 2015.

• "Mobile Agent-Based Service Migration", Proc. of 12th International Conference on Information
Technology – New Generation, pp. 8-13, Las Vegas, NV, USA, 2015.

• "Belief-Based Decision Making for Service Migration", Proc. of 48th Hawaii International Conference on
System Science, pp. 5212-5221, Hawaii, USA, 2015.

• "A Constrained, Possibilistic Logic for System Survivability Evaluation", Journal of Software Engineering
and Knowledge Engineering, (24)5, pp.777-800, 2014.

• "Semantic Specification of Service Migration for System Survivability", Proc. of 2014 IEEE International
Conference on Electro/Information Technology, p.6, Milwaukee, WI, USA, 2014.

• "A Logic Based Approach for Service Migration Scheduling", Proc. of 9th International Conference on
DISTRIBUTION A: Distribution approved for public release.

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/245-cfca76100f7f9e0ef3490b210d782ae9_AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/55-9298043e8a3fffb131b8cc62333f5aab_Final+Performance+Report.pdf

Cyber Warfare and Security, pp. 226-234, West Layfayette, IN, USA, 2014.

• "Data Labeling for Integrity in SCADA Systems", Proc. of 13th IEEE/ACIS International Conference on
Computer and Information Science, pp. 111-118, Taiyuan, China, 2014.

• "Towards a Service Migration Architecture for Service Availability", Proc. of 12th International Conference
on Security and Management, pp. 325-331, Las Vegas, NV, USA, 2013.

• "Moving and Relocation: A Logical Framework of Service Migration for Software System Survivability",
Proc. of 7th IEEE International Conference on Software Security and Reliability, pp. 139-148, Washington
D.C., USA, 2013.

• "Modeling Service Migration and Relocation in Mission-Critical Systems", IFIP WG 11.10 International
Conference on Critical Infrastructure Protection, Critical Infrastructure Protection VII, Springer, Heidelberg,
Germany, pp. 155-170, 2013.

• "Composition and Combination-based Object Trust Evaluation for Knowledge Management in Virtual
Organizations", VINE-The Journal of Information and Knowledge Management Systems, (43)3, pp. 296-
321, 2013.

• "Towards a Logical Framework for Migration-based Survivability", Proc. of 7th Annual Symposium on
Information Assurance, pp. 29-33, Albany, NY, USA, 2012.

2. New discoveries, inventions, or patent disclosures:
Do you have any discoveries, inventions, or patent disclosures to report for this period?

No

Please describe and include any notable dates

Do you plan to pursue a claim for personal or organizational intellectual property?

Changes in research objectives (if any):

None.

Change in AFOSR Program Manager, if any:

At the beginning of this project, Dr. Robert Herklotz was the program manager. Later on Dr. Kathleen
Kaplan was the program manager for this project.

Extensions granted or milestones slipped, if any:

None

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

DISTRIBUTION A: Distribution approved for public release.

Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Jun 15, 2016 11:56:57 Success: Email Sent to: yzuo@business.und.edu

DISTRIBUTION A: Distribution approved for public release.

	FA9550-12-1-0131 TITLE
	FA9550-12-1-0131 SF298
	FA9550-12-1-0131 FINAL REPORT
	FA9550-12-1-0131 SURV

